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Abstract
The asymptotic distribution of an M-estimator is studied when the under-
lying distribution is discrete. Asymntotic normality is shown to hold quite

generally within the assumed parametric family. When the specification of the

model is inexact, however, it is demonstrated that an M-estimator with a non-
smooth score function, e.g. a Huber estimator, has a non-normal limiting dis-
tribution at certain distributions, resulting in unstable inference in the

neighborhood of such distributions. Consequently, smooth score functions are

propnosed for discrete data.
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Keywords and Phrases: Robust estimation, M-estimator, discrete narametric

model, smooth score function.
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1. Introduction

M-estimation, originally proposed by Huber (1964) to estimate a location
parameter robustly, has since been apnlied successfully to a variety of esti-
mation problems where stability of the estimates is a concern. There is5, for
instance, a substantial body of literature on M-estimation for regression
models:; see Krasker and lelsch (1982) for a recent review. For further re-
ferences on M-estimation, see Huber (1331).

Much of the popularity of M-estimators can be attributed to their flexi-
bility. Desired properties of an M-estimator, such as relative insensitivity
to or rejection of extremely outlying data points, can be specified in a
direct way since the influence function of an M-estimator is proportional to
its score function; see Hamoel (1974) or Huber (1981) for details.

Surprisingly, M-estimation for discrete data seems to have received little
attention. Discrete data are no less prone than continuous measurements to
outliers or partial deviations from an otherwise reasonable model; see, for
instance, data from mutation research presented in Simpson (1985). This
paner investigates some aspects of M-estimation for discrete data.

A useful optimality theory has been developed by Hampel (1968, 1974) for
robust M-estimation of a univariate parameter. His general prescription fa-
cilitates the construction of robust M-estimators with nearly ontimum effi-
ciency at a specified model. Provosals for robust estimation of the binomial
and Poisson parameters, for instance, can be found in Hampel (1963). Hampel's
univariate theory is briefly reviewed in Section 2. Extensions of this opti-
mality theory to certain multivariate models are discussed in Krasker (1980),
Krasker and Welsch (1982), Ruppert (1985), and Stefanski, Carroll, and Ruppert

(1935).
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The score function for Hampel's optimal M-estimator is not smooth, that
is, it is not everywhere differentiable. This can lead to complications in
the asymptotic theory when the data are discrete. For instance, Huber (1981,
p. 51) considers the case where the underlying distribution is a mixture of
a smooth distribution and a point mass. He observes that if the noint mass

is at a discontinuity of the derivative of the score function. then an M-

e e n a2

estimate for location has a non-normal limiting distribution. Along the same
h lines, Hampel (1968, p. 97) notes that the ootimal M-estimate for the Poisson
parameter is asymptotically normal at the Poisson distribution, provided the
truncation poinfs of the score function are not integers. He conjectures
Tif that "under any Poisson distribution, it is asymptotically normal (with the
usual variance); however, this remains to be seen."

This paper provides extensions to the asymptotic distribution theory of
M-estimators especially relevant to discrete data, although Theorem 1 is
somewhat broader in scope'. The main results are given in Section 3. Among

the aopnlications of the theory are a more complete account of the asymptotics

of the Huber M-estimate for location and a proof of Hampel's conjecture.

Aside from providing a more complete asymptotic theory for M-estimation, the
results have implications for choosing a score function when the data are dis-
crete. These are discussed in the final sections. In particular, smooth

score functions are nroposed.

2. Parametric M-estimation: Definitions, optimality and examples

Suppose X]’XZ"" are independent observations, each thought to have dis-

tribution function (d.f.) F , where 3 belongs to a parameter set O; here 9 is
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3
a subset of RS, 4 1. Define
(2.1) Mt F) = (e t)dF,
where F is a d.f. on R], w(+,+) is a measurable real-valued function on
R] <2, and t: 2. Then Tn is an M-estimator for 3, based on a samnle of size

n, if it solves an equation of the form

v F -
(2.2) M(Tn,.),ln) O,
where Fn is the empirical d.f.. The standard requirement
(2.3) M(%;w,F%) =0, %<2,

and additional regularity conditions ensure that Tn consistently estimates
9 when the model is correct.

Suppose now that ¢ R1. The influence function at F6 of an M-estimator
for 2 has the form

Ax,3) = ——b(x9) ,

d o
-Jiggw o »3) HdF

provided this exists. Assume F9 has a density f, with respect to a suitable
measure, and assume the parametrization is smooth. Letting é(x,%)==§%1og f.(x),

the ontimal score according to Hampel's criterion has the form

(2.4) b

where
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and x is defined implicitly by (2.3). This estimator cannot be dominated
by any M-estimator simultaneously with respect to the asymototic variance and
the bound on the influence function at F%' This is assuming, of course, that
the estimator is asymototically normal at Fa.

The truncation point c(2) determines the bounds on 2(+,3) and hence the
robustness of the estimator to outlying data points. Observe that the maximum
likelihood estimator has the form (2.4) with c(8) = » and «(2) = 0.

Two examnles given in Hampel (1968) will be of special interest here.

Examnle 1. If F9 is the normal d.f. with mean 6 and unit variance then
2(x,3) =x-9. By symmetry 2(9) =90, and constant variance suggests setting
c(2)=c. The resulting estimator, with score pc(x-e), is the Huber (1964)

M-estimator for location.

Example 2. If F_ is the Poisson d.f., with density fe(x)= e 5% /x1 on
x=0,1,2,..., then 2(x,3) =x8'] - 1. Hampel (1968, n. 96) suggests taking

- 1/2

1
c(9)=c3 on the grounds that £(x,5) has standard deviation e”k. For

1 1
this choice (2.4) is eauivalent to wc(xe' /2 -9 Z -a(8)). The version
-y
(2.5) w (x9” 2 -8(9)),

1
where 3(3) =23 A-+x(5) is defined by (2.3), is slightly more convenient.

3. GIxtended asymntotic distribution theory

Conditions for consistency of an M-estimator can be found in Huber (1964,
1967, 1981). Since the smoothness nlavs no role in the consistency proofs,
consistency will usually be assumed here.

HYuber (1931, theorems 3.2.4 and 6.3.1) shows under quite general condi-

tions that if ’n—-* =T7(G5) in probability as n- = then
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(3.1) N EM(T sws6) = Y u(x,2) 4o (1),

where M is given by (2.1). In particular, ¥ need not be differentiable; mono-
tonicity or Lipschitz corcinuity conditions are sufficient. That Tn is asymo-
totically normal follows immediately from (3.1) provided M(t;y,5) has a non-
»53 zero derivative at 3 and O<:fy2(-,9)dG<im; see Corollary 6.3.2 of Huber (1981).
For stronger almost sure renresentations for Tn under stronger conditions, see
Carroll (1978a, 1978b).

To avoid Lipschitz conditions for score functions like (2.5) that have im-

nlicitly defined centering parameters, the following lemma is useful. The

proof is contained in the proof of Theorem 2.2 of Boos and Serfling (1980).

Denote by }}-Hv the total variation norm, given by
k
| = i yoi -
Inlf, = Vim supi%],h(xi) h(x;_ )15
where the supremum is over nartitions a-= xo< x]< ce. < xk= b of [a,b], and the

limit is as a~->, b= x»,

Lemma 1. Let X1,X2,... be independent, each with d.f. G, and let 5=T(G).

Suppose 2(x,t) is continuous in x for t: ic rd and

Tino(-,t) - o(+,3)1] = 0.

t

y

If Tn—*% in probability as n--», then (3.1) holds.

Remark. The score functions of Examnles 1 and 2 are continuous in total vari-
ation. For the former see Boos and Serfling (19%80). For the latter, see

Simpson (1983).
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When the underlying distribution is discrete, the set of points where
fails to have a derivative has positive probability for certain parameter
values. In light of (3.1), it is natural to ask whether M can have a deri-
vative at such parameter values, i.e., whether Tn can be asymptotically nor-
mal.

The following theorem addresses this question. For j3¢2c Rd, F. is as-
sumed to have a density f9= f(+,2) with respect to a s-finite measure u, and
v, = (+,) is measurable for each 3. Let ||+!l denote any norm on R equivalent

to the Euclidean norm. Some reqgularity conditions are needed:

(A1)} There are measurable functions Wy = w(+,t) and 9y = a(+,t) for which

£

[ ’ . g.du ini I
;utftdu, oy gtd_ and [wtgtdu are finite and, for some 3>0,
(1) {fs- ft! s -tilgt, and
(i) !ws! < wy

almost everywhere [u] (a.e.) when ||s-t]| < &;

(A2) There is a measurable Rd—va1ued function %t= f(.,t) such that

: T
fo-fo-(s-t) fl = o(lls-tl]) aces

(A3) s vy a.e. as s>t.

Theorem 1. If for each t« o (A1)-(A3) hold and

3.2) M(t:Ft) = 0

then

9 2 M : ' = [y f du
R DS“(S’Ft)!S:t ,"thtd“’

wWnere Ds denotes vector differentiation, and where the dependence of M on .

has been suppressed.

|.14\1




Proof. For s,te®

0 = M(s:Fy) - M(t3F,) + M(s;F) - M(s:F)
= M(s;F.) - M(t:FL)
. (3.4) *M(EF) - M(E;F) + R (s),
2
| where Re(s) = flw - v ) (f - f )du

and (3.2) was used. The integrand of Rt(s) is dominated in absolute value

by 2's - tlls g, on ||s-tl] <3 because of (A1). Hence, by (Al) and Dominated
Convergence,
(3.5) R.(s) = o(l]s-tll).

t

Similarly, (A2) and Dominated Convergence imply

< ffjtf ifs—ft-(s-t
=o(|s-t]]) as s~+t,

since the integrand is dominated by 2||s - t|] {wtlgt on iIs-t]| <3. From

(3.4) to (3.6) conclude

H(s3F,) - M(F) + (s-t) fu ddul = offls - t]]).

¢)
Hence D M (s;Ft) exists at t and is given by (3.3).
Remarks. 1. Note that It need not be differentiable.

2. Nhen'ut= Zt= ?t/ft, (3.3) generalizes the usual information identity.
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3. Huber (1981, p. 51) observes a special case, namely (3.3) holds when u

is Lebesgue measure, w(x,t) =w(x -t), where y(+) is skew-symmetric about zero,

and f(x,t)=f(x-t), where f(-) is differentiable and symmetric about zero.
4. Equation (3.3), when it holds, also quarantees that the influence function

at the model, given by
! . H ']
‘\DSM(S’Ft)|S=t} W(X,t)

is defined for each t< o, provided that fwt?tdu# 0.

Examnle 2 (continued) Suppose f{x,t) = e'ttx/x! on {0,1,2,...}, t>90. Recall
that the ootimal M-estimator has the score y(x,t) = vpc(xt'l/2 -3). This esti-
mator is known to be asymntotically normal at the Poisson distribution when t
is in one of the open intervals where neither of the truncation points
tag(siic) is an integer; see Hampel (1968, p. 97).

To show that it is asymptotically normal at every Poisson distribution,
as conjectured by Hampel, first use Theorem 1 with

25f( n"]

g(x,t) = e x-1,t+8) + 38 @5-1-6)ﬁx¢),wu,ﬂ = ¢ and

f(x,t)

I

f(x-1,t) - f(x,t). Note that c=1 is sufficient for 3 to be con-
tinuous, and hence for (A3); see Simpson (1985).

Since Lemma 1 applies and O<:fwif du:sc2 for c21, it follows that the

t
estimator is asymptotically normal at every Poisson distribution if it is

consistent. For consistency see Hampel (1968, p. 96) and Theorem 2 of Huber
(1967).

In Theorem 1, (3.2) allows smoothness of the parametrization to be sub-
stituted for smoothness of i within the assumed parametric model, so that

the estimator is asymptotically normal under further conditions. If the

. . = C
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specification of the model is inexact (as is often suspected), no result Tike
(3.3) is available. In certain cases, it is still possible to obtain the
limiting distribution of Tn from (3.1).

Assume for simplicity that © is an open subset of the real line. The
score functionsused for robust estimation are generally at least niece-wise
differentiable. The one-sided derivatives of M(t;G) will then exist, in

general, even when M fails to be differentiable. Urite
m(t:G) = Y (t;6)
b dt b

when the derivative exists. By a well-known result from calculus, if
m(3-3;5) and m(3+;G) exist, they are equal to the corresponding one-sided

derivatives of M(t:G) at 3; see, e.qg., Franklin (1940, p. 118).

Theorem 2. Suppose for some 2 interior to £ that M(7:Q) =0, and let Tn be a
zero of M(t:Fn), n=1,2,..., where Fn is the empirical d.f. Assume the fol-
lowing:
(81) M(3-;G6) and m(2+:G) exist finitely and are non-zero and of
the same sign;
. 2 _ .2
(B2) 0<3<=, where 5° = [u.dG;

v

(B3) Tn—~% in orobability as n-=, and (3.1) holds.

Then
1
(3.7) 1im  sup ?pr{n‘é(T -9) <z} - H(z)| = 0,
n->» —x<{Z2<0 n
s(Im(3+56) 1z/5), z=0
where H(z) = {

and > is the standard normal d.f.
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Remarks. 1. Huber (1964, o. 73) alludes to a similar result for a location
estimator.

2. The requirement that m(2+;G) have the same sign is actually implied by
the remaining conditions. If the one-sided derivatives were to have opposite
signs, M(t;G) would not change signs in a neighborhood of 5 and (3.1) would
not hold.

The proof of Theorem 2 is deferred to the Appendix.

Example 1 (continued) Recall that the Huber M-estimator for location has the
score y(x,t) = wc(x- t). For any d.f. G, M(-»;G) = ¢ = -M(=;G), and M(t;G) is

continuous in t so it has a zero 3. Assume 2=0. This is unique if

~

G{c-) > G(-c+), in which case Tn-»O in probability by Proposition 2.2.1 of
Huber (1981). Since b is continuous in total variation, (3.1) holds by

3 Lemma 1. Letting 2(x,t) = d/dt wc(x -t) = -y'(x-t) if it exists, observe

¢
h that -i{x,t-) = I(-c<x-t<c) and -4{x,t+) = I(-c<x-t=<c), where I(+) de-

notes the indicator function. Bounded convergence yields -m(0-;%5) =G(c-) - G(-c-)

1
and -m(0+:G) = G(c+) - G(-c+). Hence, by Theorem 2, n/zTn is asymptotically
normal if G(c+) - G(c-) = G(-c+) - G(-c-); otherwise, it has a limiting dis-
tribution consisting of the Teft and right halves of two normal distributions

with different variances (cf. Huber (1981, p. 51)).

4. A counterexample

It is instructive to examine the extent of the non-normality that occurs
in a specific example. Consider again the optimal M-estimator for the Poisson

parameter. The score function is

-c, x<£(t)
_1/ _l/n
s(x,t) = vc(xt 2.3) = xt™ 2 -3, &(t) <x<h(t)
C, h(t) = x,

..........
. e
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- T At .. Sl T
W, Y S PR L YK, W MRS TP DV 0 ¥ VAN




Y - i i~y Ll Y K 7 i A *Sha B Sadid —— - T '-’.

11

T ’].‘l..ﬂ‘l
ity

. 7_-;;—,7_' "
. .o RN .
PRI R .

e

. AT

where ¢(t) = t'/Z

(z(t) ~c) and h(t) = t=(3(t) +¢c).
Let G be the actual d.f. and let *=T(G). The simplest situation is when
% is small. Assume henceforth that <(:) - 0«<n(*) = 1. Calculation yields

1
30¢) = (et -1) for () <0, 0<n(t)-1, and 3(t)=ciet(1+t) N et i1 4t)7]

for ¢(t) <0, 1<h(t)<2. Since 2 is continuous, equating the two exoressions

at > gives

(4.1) 3%’ = ¢

The one-sided derivatives of 2 at 3 are 3'(3-) = ce9 and 3'(8+) = %cea(T +%)'2,

where (4.7) was used. Note that 2 is strictly increasing at 3. Since

ué(c-)=1 and ué(c+)=0,

. ce’, x=0
(4.2) S(xy3e) = {
0, x=1,2,
and Tee (1+8)7%, x=0
-i(x,3+) = —]2—ce9 {e'] + (1 +9)'T}, x =1
0, x=2,3,...

Suppose G is a mixture of a Poisson distribution F, and a point mass at an

t
integer z, i.e., G=(1- e)Ft+-aSZ. Assume z >h(t) so ¥(z,3+)=0. From (4.2)

and (4.3)
m(3+;6) _ 1,t = 1+t
(4.4) 7—Tm(a-;§) TR ek
where m(3-;G) = -ce%'t(1— c). The ratio (4.4) is unity only when t=-, which

corresponds to <=0 or z=t. By Theorem 2, the limiting distribution of

i
rwé(Th - 3) consists of the right and left halves of two normal distributions.
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The ratio of their standard deviations is (4.4).

Solving 0 = M(5:G) = ¢c{1-(1- s)e%'t

} yields t=3+10g(1-2:). Table
shows the values of t and (4.4) for several values of = when 3 = 0.25 and
c=5""e? < 1.5576 ... (see (4.1)). In addition, the effect on a nominal .05
tail probability is shown.

For very small values of ¢ the effect is minimal, which accords with the

robustness of Tn in the sense of weak* continuity (see Hamoel (1971)), since

it is asymptotically normal at the model. As ¢ increases, however, the ef-

v LRI N % A 5 N S Jur 2SS0 dhe b e 4
S N . B
P .
. 4 . AR . . .

fect becomes more serious, and inference based on Tn can be substantially

biased.

For related work see Stigler (1973), who observes that a bias of this

type can arise when the trimmed mean is used for discrete or grouned data.

Table 1 Effect of contaminating mass e with 3 = 0.25 fixed
3 t r=(4.4) 5(-1.645r)
0 0.25 1 .05
.01 0.24 0.976 .054
0.05 0.199 0.877 .074
0.10 0.145 0.748 .109
0.15 0.087 0.610 .158
_ 0.20 0.027 0.465 .222
|
Lv
po- 5. Smooth score functions
>7~.
3 In the example of the preceding section, one might argue that the para-
! meter values where problems arise are unlikely to occur in practice, or that

¢ can be changed slightly. It is not, however, the non-normal limiting dis-
tribution of Tn at certain distributions that is of concern, but the insta-

bility of inference based on Tn near those distributions. This phenomenon




FRat i ] !"
N
s vty

-
-

13

can alternatively be internreted as a discontinuity of the asymntotic variance

‘] (1;2 ']
171(6)

51). In the neighborhood of a distribution where V is discontinuous, estimates

functional V(T(G);G) = {m(T(G):G)} dG “m(T(G8)3;G)} "; cf. Huber (1981, p.
of the variance of Tn may be unstable.

Instability of tyis type can be avoided by reauiring the M-estimator score
function to be smooth, for example, by replacing wc(-) in (2.4) with a smooth
aoproximation. A natural way to construct such a function is by rescaling a
smooth distribution function.

Suooose F is an absolutely continuous d.f. with density f symmetric about

zero. Then

(5.1) p(x) = ZC{F(ZC—);(W) - ;“}

is monotone increasing, skew-symmetric about zero, and satisfies u(»)=c and
9'(0)=1. Observe that Pe is obtained from (5.1) by taking F to be the uni-
form distribution on [-%,%]. This can be aporoximated arbitrarily closely
by a symmetric beta distribution with a small value for the shape parameter,
ice., f(x)= (% +x){(Y%-x)32 on [-%,%]. The resulting score function is
complicated, however, and its second derivative has jump discontinuities. A
more convenient choice is the Jogistic distribution, which leads to the smenth

function

Lc(x) = ¢ tanh (x/c).

This has appeared previously. Lc(x -t) is the maximum Tikelihood score for
the location of a logistic distribution with scale 1. Holland and Welsch
(1977) include an M-estimator using LC in a Monte Carlo study of robust re-
gression estimates.

For the important special case of estimating a Poisson parameter robustly,
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" a smooth version of the ontimal M-estimator solves

13

(g

) ﬁ—]

(5. L (X].t' S-3(t)) =0,

i~
f—
O

1‘

where © is defined in the usual manner.

Table 2 aives asvmptotic variances V, and bounds v, on influence functions

5
for the estimator defined by (5.2), labeled LC, and the optimal estimator,
Tabeled Yo In each case c=1.5. The calculations are at the Poisson model,
and V_ and . are stabilized by dividing by = and %VZ respectively.

Note that V./2 is the asymntotic relative efficiency of the maximum Tike-
lihood estimator (sample mean) with respect to the corresponding M-estimator.
The asvmptotic variances for the logistic score are slightly smaller than
those for the "ontimal" score. This is possible because the bounds on the
influence function of Lc are slightly higher for Ve In terms of nerformance

at the model, there appears to be 1ittle difference between LC and e

Table 2 Asymptotic variances and influence function bounds at the Poisson model

Mean ] L

¢ Vs ‘ A

3 Ve/e ye/e V9/9 YS/B
0.1 1.052 3.16 1.048 3.27
0.2 1.107 2.24 1.081 2.53
0.3 1.138 1.98 1.094 2.29
0.4 1.114 2.00 1.095 2.19
0.5 1.092 1.98 1.033 2.14
1.0 1.071 1.84 1.059 2.07
2.0 1.057 1.74 1.045 2.04
5.0 1.043 1.75 1.038 2.02
10.0 1.040 1.74 1.035 2.02
100.0 1.037 1.73 1.033 2.01
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6. Further remarks

The need for smooth score functions is most clear when the data consist of
counts. In this case every deviation from the model involves noint masses.

An important consequence of Theorem 1 is that Hamoel's optimal estimator
(2.4) is indeed optimal as claimed when the model distribution is discrete.
It would be disturbing if the theory were to break down at a countable number
of parameter values. Moreover, the smooth versions discussed in Section 5,
which provide more stable inference, are justified for every parameter value
as being nearly optimal,

Although the discussion has focused on the score functions arising from
Hampel's optimality theory, it is not 1imited to that context. For instance,
a score based on Hampel's three part redescending  (see Huber (1981, p. 102))

will be prone to the same difficulties, and a smooth version will be more stable.

Appendix. Proof of Theorem 2.

Since the d.f. H is continuous, uniform convergence in (3.7) will follow
from pointwise convergence via Polya's Theorem (Serf]iné (1980, n. 18)).
Write M(t) for M(t:G) and m(t) for m(t;G). denote by U(3) the set
(t: 0<|t-9]<8). By (B1), m is defined on U(S) if § is sufficiently small.

Moreover, given ¢ >0, there is a 5 for which te U(S8) implies

Im(t) - m(v-)] < e if t<o
and

Im(t) - m(3+)} < ¢ if t>9.

Choosing = <min{|m(5-)], [m(8+)|} then guarantees that |m(t)| is bounded

away from zero on U(8). Fix such a 8.
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Since M(2) = 0, t=U(3) implies

(A.1) M(t) = m(7)(t-=)

for some t strictly between t and 3, by the Mean Value Theorem (which only

requires one-sided derivatives at the endnoints of the interval on which it

is apolijed). Since m is bounded away from zero on U(3), (A.1) shows

t
it-2

as t-+3. The right hand side of (A.1) equals

(A.2) B(t)(t-9) + R(t),

where

L)
—
+
~—
]

m(o+)I(t>8) + m(8-)I{t<1),

el
—
t
~—
1l

({m(t) - m(e+)}I(t>3) + {m(1) - m{e-)}I{t<8)](t-9),

and I(A) is theindicator for the set A. Note that (A.2) also holds if t=9.

Since R(t) = o(!t-9]) = o([M(t)]), (A.1) and (A.2) yield

(A.3) D(T In’2(T

) C-8) = nfa(r )+ o((n/m(T )).

Because of (B2), (B3) and the Lindeberg-Levy central limit theorem, the right
hand side of (A.3) converges in distribution to a N(O,OZ) random variable,
and, hence, so does the left hand side.

To obtain the limiting distribution of Tn, partition its range and consider

cases. If z<0 then

1
pr{n/Z(Tn-a)sz, T >} =0,
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while

I 1/2 -a) - s 93 = - ! 1/3 -3) < )
nrin (Tn )<z, Tn\ 30 or{ D(Tn),n (T 3) < (T )zt

Since D(Tn) = m(2-) when Tn<53, and D(t) does not change sign on (3 - 3,2 +3)
by (B1), {(A.3) implies that this last probability converges to »(|m(3-)!z/3)

as n-». Similar arquments establish that, for z>0,
A ', 1
prin2(T -2)<z, T_<3} =or{|m(3-)|n (Tn -35)<0} - 5

and

1/2 < A
prin (Tn -3)<cz, Tn> 3}

1
= orf0 < Im(+) [n (T -3) szim(s4) |} ~ 3(im(3+)2/0) - %
and finally
1/ 1/2 ]
nr{n 2(Tn--a)s 0} =1 - or{|m(8+)(n (Tn- 8) >0} » 5
as n-~. The result follows by collectina terms.
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